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a b s t r a c t

In this paper, a Lagrangian particle method is proposed for the simulation of multiphase
flows with surfactant. The model is based on the multiphase smoothed particle hydrody-
namics (SPH) framework of Hu and Adams (2006) [1]. Surface-active agents (surfactants)
are incorporated into our method by a scalar quantity describing the local concentration
of molecules in the bulk phase and on the interface. The surfactant dynamics are written
in conservative form, thus global mass of surfactant is conserved exactly. The transport
model of the surfactant accounts for advection and diffusion. Within our method, we can
simulate insoluble surfactant on an arbitrary interface geometry as well as interfacial
transport such as adsorption or desorption. The flow-field dynamics and the surfactant
dynamics are coupled through a constitutive equation, which relates the local surfactant
concentration to the local surface-tension coefficient. Hence, the surface-tension model
includes capillary and Marangoni-forces. The present numerical method is validated by
comparison with analytic solutions for diffusion and for surfactant dynamics. More com-
plex simulations of an oscillating bubble, the bubble deformation in a shear flow, and of
a Marangoni-force driven bubble show the capabilities of our method to simulate interfa-
cial flows with surfactants.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Multiphase systems occur in a wide range of technical or biological applications. The dynamics of such systems are much
more complex than that of single-phase systems. Depending on the characteristic length scales, surface-tension forces at an
interface may dominate inertia effects and thus have a strong influence on the overall flow evolution. Surface-tension effects
can be differentiated into the capillary force and the Marangoni-force. The former is proportional to the local curvature and
minimizes the interface area, the latter accounts for surface-tension gradients along the interface (Scriven and Sternling [2]).

Surface-active agents (surfactants) offer the possibility to manipulate or even control the dynamics of multiphase sys-
tems. By their nature, surfactant molecules adhere to a fluid interface and reduce the local surface tension as they form a
buffer zone between the two phases. The surfactant at an interface is advected with the interfacial motion and may diffuse
along the surface. Consequentially, surface-tension gradients can develop and influence the flow evolution. Besides the insol-
uble case, where all molecules are confined to the interface, the dynamics of the surfactant can be coupled with the adjacent
phases. Depending on the bulk concentration and the local interface concentration, adsorption and desorption may transport
surfactant molecules between the bulk phase and the interface.

Surfactants are widely used in technological and biological applications. Due to the presence of surfactant, e.g. in a mix-
ture of water and air, very small droplets can be formed which is useful to drug delivery, water purification and other appli-
cations. Even more important is the presence of surfactant in pulmonary alveoli, whose liquid-lining layer can function only
. All rights reserved.
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with a substance that reduces surface tension (Pattle [3], Clements [4]). A simple estimate of the pressure in the liquid layer
of an alveolar structure with a characteristic length scale of about 100 lm and the Young–Laplace equation shows that a
pure water–air interface ðr0 � 0:07 N=mÞ would cause endexpiratory alveolar collapse and atelectasis (Von Neergard [5]).
Moreover, surfactant molecules are believed to contribute also to pulmonary defence mechanisms and local immunomod-
ulation (Hamm et al. [6]).

A numerical model describing interface dynamics including surfactants needs to handle the phase singularity at the inter-
face and solve the surfactant evolution equation on the interface. Also, an evolution equation for the surfactant in the bulk
solution needs to be coupled with the interfacial dynamics. As a consequence, the surfactant dynamics and the flow field
cannot be solved independently from each other. Another important issue is the conservative formulation of the governing
equations, in particular with respect to the mass of surfactant. These requirements render the modeling of multiphase flows
with interfaces including surfactant effects a challenging task which has been studied already since about 20 years.

Early numerical investigations of the effect of surfactants in multiphase systems were limited to the insoluble case, where
the transport of molecules between the bulk phase and the interface is neglected. The models were mainly used to investi-
gate the effect of surfactants on drop deformation in a shear flow. Stone and Leal [7] solved the time-dependent convective-
diffusion equation for surfactant transport on an interface using the boundary-integral method. Including the effect of sur-
factant solubility, Milliken and Leal [8] studied the deformation and breakup of a drop in an axial extensional flow with their
extended boundary-integral method, but they did not present a general method for simulating arbitrary interfaces with sol-
uble surfactants. While these works were restricted to two-dimensional problems, Yon and Pozrikidis [9] developed a fully
three-dimensional finite volume method combined with the boundary-element method to study shear flows past a viscous
drop. Whereas these methods described the interface in a discrete way, many following works used a continuous interface
representation to account for interface dynamics. Xu and Zhao [10] used the Eulerian level-set method, where the moving
interface is formulated as zero level-set on a Cartesian grid. They considered the interface to be convected passively by the
flow, i.e. they prescribed the flow field and solved the surfactant dynamics on the interface without feedback to the flow
field.

With respect to its importance for realistic long-time simulations and for accuracy reasons, the surfactant mass conser-
vation property was of special interest in subsequent works. James and Lowengrub [11] presented a fully coupled, axisym-
metric, incompressible Navier–Stokes solver based on the ‘‘volume of fluid” (VOF) method and simulated insoluble
surfactant dynamics on a moving interface. Different from previous works, they tracked the surfactant mass instead of solv-
ing the evolution equation for the concentration. Also, the surface area is tracked in this method instead of a reconstruction
from the volume fraction. As consequence, for long-time simulations and strong interface deformations the reconstruction of
the interface might be inconsistent with both the volume fraction and the surface area. Xu et al. [12] used a level-set method
for interfacial Stokes flows to investigate the effect of insoluble surfactants on single drops and droplet interactions. Conser-
vation of surfactant material on the interface was enforced numerically by a rescaling operation, since the method itself was
not formulated in conservative variables.

Recently, Lai et al. [13] proposed an immersed-boundary method to simulate the interfacial problems with insoluble sur-
factant. Their main achievement is a new discretization for the surfactant concentration equation and a Lagrangian tracking
of the interface, which allows for numerical conservation of the total mass of surfactant.

An important increase of considered complexity in the contaminated and moving interface problem was achieved by
Zhang et al. [14]. They solved the fully coupled flow field and surfactant dynamics on the interface and in the bulk phase.
The flux of surfactant on the interface was assumed to be balanced by adsorption and desorption. But this front-tracking
method does not conserve the total mass of surfactant. Muradoglu and Tryggvason [15] also used the front-tracking method
to simulate interfacial flows with soluble surfactant, but assumed that the mass transfer between the bulk phase and the
interface occurs within a thin adsorption layer. They considered the axisymmetric motion and deformation of a viscous drop
moving in a circular tube and demonstrated first-order convergence of the surfactant mass error.

Another class of methods use finite elements to simulate free surface flows with surfactant transport, e.g. Liao et al. [16]
and McGough and Basaran [17]. Such approaches do not satisfy discrete conservation of surfactant mass at the interface,
which can be of particular importance for the long-time simulations of realistic applications.

In this article, we present a numerical method that includes all main relevant surfactant dynamics in an incompressible
Navier–Stokes solver based on the smoothed particle hydrodynamics (SPH) method. This Lagrangian formulation for multi-
phase problems requires no special interface capturing or tracking and can handle complex geometries as well as topology
changes. We introduce the surfactant dynamics in conservative form and use mass fluxes to consider the exchange of sur-
factant between the interface and the bulk phase. Within the thin interface layer, we solve a diffusion equation for the sur-
factant and due to our Lagrangian method advection is naturally included. Furthermore, we use different constitutive
equations for the surface-tension correlation to demonstrate the general applicability of our method. We validate the meth-
od by comparisons with analytic solutions and grid convergence studies and show the exact conservation of surfactant mass
on the interface and in the bulk phase. Finally, we study some more complex multiphase problems such as the oscillating
bubble experiment, the bubble deformation in shear flow and the Marangoni-force driven bubble.

In the next section, the governing equations for the flow field and the surfactant dynamics are presented and the numer-
ical algorithm summarizing also the main aspects of the SPH particle method is described in Section 3. The diffusion model in
the bulk phase as well as on the interface and the coupling between them is validated and tested in Section 4. Some complex
simulations are presented in Section 5 and finally, concluding remarks are given in Section 6.
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2. Governing equations

The isothermal Navier–Stokes equations are solved on a moving Lagrangian frame
dq
dt
¼ �qr � v; ð1Þ

dv
dt
¼ gþ 1

q
�rpþ FðmÞ þ FðsÞ
h i

; ð2Þ
where q; p; v and g are material density, pressure, velocity and body force, respectively. FðmÞ denotes the viscous force and
FðsÞ is the interfacial surface force.

In SPH, incompressible flow is usually modelled by the weakly-compressible approach, in which a stiff equation of state
(EOS) is used to relate the pressure to the density, i.e.
p ¼ p0
q
q0

� �c

þ b; ð3Þ
with c ¼ 7, the reference pressure p0, the reference density q0 and a parameter b. These parameters and the artificial speed of
sound are chosen following a scale analysis presented by Morris et al. [18] which determines the threshold of the admissible
density variation.

The viscous force FðmÞ then simplifies to the incompressible formulation
FðmÞ ¼ gr2v; ð4Þ
where g is the dynamic viscosity. Following the continuum-surface-tension model (CSF), the surface force can be expressed
as the gradient of the surface stress tensor with the surface-tension coefficient a
FðsÞ ¼ r � aðI� n� nÞdR½ � ¼ �ðajnþrsaÞdR: ð5Þ
The capillary force ajndR is calculated with the curvature j, the normal vector of the interface n and the surface-delta func-
tion dR. This expression describes the pressure jump condition normal to an interface. In case of surface tension variations
along the interface (e.g. due to non-uniform temperature or surfactant concentration) the Marangoni-forcersadR results in a
tangential stress acting along the interface (rs is the surface gradient operator).

The evolution of surfactant on the interface is governed by an advection–diffusion equation with a source term account-
ing for the surfactant transport between the bulk and the phase interface, e.g. adsorption and desorption,
dC
dt
¼ rs � DsrsCþ _SC; ð6Þ
where C; Ds and _SC are the interfacial surfactant concentration, the diffusion coefficient matrix (in case of isotropic diffusion
Ds ¼ Ds � I) and the source term, respectively.

After integration over the domain, Eq. (6) gives the variation of the total mass ms of the interfacial surfactant
dms

dt
¼ 1

dt

Z
V
CdRdV ¼

Z
V
rs � DsrsCdRdV þ

Z
V

_SCdRdV : ð7Þ
The source term _SC specifies the surfactant mass flux between the bulk phase and the interface. As widely used in the liter-
ature, the transport of surfactant is assumed to follow Langmuir kinetics (see Borwankar and Wasan [19])
_SC ¼ k1CsðCH � CÞ � k2C; ð8Þ
where k1 and k2 are the adsorption and desorption coefficients and Cs is the volumetric concentration of surfactant in the
fluid phase immediately adjacent to the interface. The maximum equilibrium surfactant concentration is given by CH, which
is only reached by C in the limit of large concentration Cs.

Assuming that each surfactant molecule can move freely in the bulk phase, the transport of surfactant can be described by
the advection–diffusion equation
dC
dt
¼ rD1rC: ð9Þ
Here, D1 denotes the bulk diffusion coefficient and C is the volumetric surfactant concentration in the liquid. After integra-
tion over the domain the rate of change of the total surfactant mass in the liquid Ms is obtained by
dMs

dt
¼
Z

V
D1r2CdV �

Z
V

_SCdRdV : ð10Þ
The second term on the right side of Eq. (10) is equal to the second term on the right hand side of Eq. (7), hence ensures
global mass conservation.
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To close our model, we relate the interfacial surfactant concentration C to the surface-tension coefficient a by a consti-
tutive equation. In this paper, the model of Otis et al. [20] defined by two piecewise linear functions is used
aðCÞ ¼
a0 þ ðaH � a0Þ C

CH ; C 6 CH

aH � a2
C

CH � 1
� �

; CH < C 6 Cmax:

8<
: ð11Þ
In Eq. (11), a0 is the reference surface tension of the clean surface and aH is the reduced surface tension at the maximum
equilibrium surfactant concentration CH. The second part of the function is defined up to the maximum possible surfactant
concentration Cmax where the surface tension a changes proportionally with factor a2 to the non-dimensional concentration
C=CH. Cmax is the maximum dynamic concentration of surfactant obtainable on dynamic compression of the interface, see
[20].

Note that the use of other relations, such as the Frumkin isotherm or the Langmuir model [21,14,9,22,23], is
straightforward.

The governing equations are non-dimensionalized using reference values for the velocity u0, the length scale l0, the den-
sity q0 and the bulk concentration C1. The non-dimensional characteristic numbers are
Re ¼ q0u0l0

g
; Ca ¼ gu0

a0
; Bo ¼ qgl2

0

a0
; ð12Þ

Pes ¼
u0l0

Ds
; Pe1 ¼

u0l0

D1
; Da ¼ CH

C1l0
; ð13Þ
where Re; Ca; Bo; Pes; Pe1 and Da are the Reynolds number, the capillary number, the Bond number, the Peclet number
based on Ds, the Peclet number based on D1 and the Damköhler number [15].
3. Numerical method

The governing equations are discretized using the multiphase SPH method of Hu and Adams [1]. Each particle represents
a Lagrangian element of fluid, carrying all local phase properties. With updating the positions of the particles, this method
accounts for advection as the governing equations are formulated in terms of material derivatives.
3.1. Multiphase flow solver

According to Hu and Adams [1], we calculate the density of a particle i each timestep from a summation over all neigh-
boring particles j
qi ¼ mi

X
j

Wij ¼
mi

Vi
: ð14Þ
Here, mi denotes the particle mass, Wij ¼Wðri � rj;hÞ is a kernel function with smoothing length h and Vi is the volume of
particle i. This summation allows for density discontinuities and conserves mass exactly. Based on the studies of Morris et al.
[18], we use the quintic spline function with compact support of 3h as kernel function.

The pressure term in the momentum equation is approximated as
dvðpÞi

dt
¼ � 1

qi
rpi ¼ �

1
mi

X
j

V2
i pi þ V2

j pj

� � @W
@rij

eij; ð15Þ
with the weight-function gradient @W
@rij

eij ¼ rWðri � rjÞ. Note that this form conserves linear momentum exactly since
exchanging indices i and j in the sum leads to an opposite pressure force. The viscous force is derived from the inter-parti-
cle-averaged shear stress with a combined viscosity. A simplification for incompressible flows gives
dvðmÞi

dt
¼ mir2vi ¼

1
mi

X
j

2gigj

gi þ gj
V2

i þ V2
j

� �vij

rij

@W
@rij

; ð16Þ
where mi ¼ gi=qi is the local kinematic viscosity of particle i;vij ¼ vi � vj is the relative velocity of particle i and j and
rij ¼ jri � rjj is the distance of the two particles.

The calculation of the interface curvature to determine the surface tension can be avoided. For this purpose, in the con-
tinuous surface force model (CSF) the surface force is rewritten as the gradient of a stress tensor. The gradient of the color
function ci is used as approximation of the surface-delta function dR. This color function defines to which phase particle i
belongs, i.e. ci ¼ 0 for phase 1 and ci ¼ 1 for phase 2. Since this function has a unit jump across the phase interface, the par-
ticle-averaged gradient rci of particle i
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rci ¼
1
Vi

X
j

V2
i ci þ V2

j cj

h i @W
@rij

eij ð17Þ
has a delta-function-like distribution. Hence, the interface stress between phases 1 and 2 is obtained as
PðsÞi ¼ ai
1
jrcij

1
d

Ijrcij2 �rcirci

� �
; ð18Þ
where d denotes the spatial dimension and a is the surface tension coefficient between the phases 1 and 2. Finally, the par-
ticle-averaged gradient of this stress term gives the particle acceleration due to surface tension
dvðsÞi

dt
¼ 1

mi

X
j

@W
@rij

eij � V2
i P

sð Þ
i þ V2

j P
ðsÞ
j

� �
: ð19Þ
3.2. Surfactant kinetics

Using the color function to distinguish different phases in the system, particles with a non-vanishing color-function gra-
dient approximate the singularity at an interface as a narrow transition band, see Fig. 1. As only particles with at least one
neighbor of a different phase have a non-vanishing color-function gradient, the thickness of this transition band is of the size
of 3h at each side of the interface. Within this narrow band of particles, the governing equations for the interfacial phenom-
ena (6)–(8) are solved locally for each individual particle. Hence, using the color gradient function as surface-delta function,
an interfacial particle i contributes to the interface area by
Ai ¼ Vijrcij ð20Þ
(in two dimensions, Ai and Vi are the interface length and the particle area). Corresponding to the individual interface area
fraction, each particle carries a fraction of interfacial mass of surfactant msi. The evolution of the surfactant mass fraction of a
single particle due to adsorption and desorption is given by
dmðsÞsi

dt
¼ _SCi

Ai ¼ k1C1 CH � Ci
� �

� k2Ci
� 	

Ai; ð21Þ
where the subscript ðsÞ indicates the effects due to adsorption and desorption. To assure the numerical stability for particles
with small interface area, the interfacial surfactant concentration is calculated from a kernel average
Ci ¼
P

jmsjWijP
jAjWij

; ð22Þ
where summation is on all neighboring interface particles, i.e. all neighboring particles which are within the narrow tran-
sition band.
Sketch of the transition band at an interface with the surface delta function dR and particles of two different phases. The width of the transition band
l to the compact support of the kernel function on each side of the interface, i.e. in total 6h.
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As we solve the surfactant equations in conservative form, the total mass of surfactant is conserved exactly. Due to par-
ticle motion it may happen, that interface particles leave the transition band and transport surfactant material away from the
interface. To ensure exact conservation of surfactant mass in the system, we must treat these particles k that leave the inter-
face transition band in a special way. Their fraction of interfacial mass of surfactant msk is mapped back to a particle i that
remains within the transition band by
Dmmap
si ¼

X
k

msk
WkiP

IWkI
; ð23Þ
where the smoothing function Wki serves as weighting factor. To satisfy the consistency condition, this weight is normalized
with

P
IWkI. Here, the summation is on all particles I of the intersection of neighbors of k and the remaining interface

particles.

3.3. Bulk diffusion

The diffusion in the bulk phase has a similar form as the viscous force in the momentum equation for an incompressible
flow. Hence, the SPH approximation of the diffusion equation in conservative form follows in analogy to Eq. (16) as:
dMsi

dt
¼
X

j

2D1iD1j

D1i þ D1j
V2

i þ V2
j

� �Cij

rij

@W
@rij

; ð24Þ
where Msi is the mass of surfactant in the bulk phase of particle i;D1i and D1j are the bulk diffusion coefficients of particle i
and j and Cij ¼ Ci � Cj is the concentration difference. Note that the average diffusion coefficient in Eq. (24) ensures the zero-
flux condition between two phases if one diffusion coefficient is zero. Each time-step, after updating the particle surfactant
mass and particle volume, the local bulk concentration is calculated from
Ci ¼
Msi

Vi
: ð25Þ
3.4. Interfacial diffusion

Following Bertalmío et al. [24], the interfacial diffusion Eq. (6) can be expressed as
dC
dt
¼ rs � DsrsC ¼

1
jrcjr � ½PsDsrCjrcj�; ð26Þ
where Ps ¼ I� n� n is the operator, which projects the gradient of the surfactant concentration rC tangentially to the
interface (i.e. the surface gradient operator rsC). This formulation solves the interfacial diffusion on a surface of a finite
width and thus is well suited for the interfacial modelling within the smoothed particle hydrodynamics framework.

Discretizing Eq. (26) with SPH, we calculate the term in the brackets on the RHS ðk ¼ PsDsrCjrcjÞ for each particle and
use the general SPH summation formula to calculate the divergence of k. Finally, the material derivative of the interfacial
surfactant mass fraction by interfacial diffusion is
dmðdÞsi

dt
¼
X

j

kiV
2
i þ kjV

2
j

� � @W
@rij

eij: ð27Þ
Particles on the fringes of the interface transition band might have only one neighboring particle of a different phase. Hence,
the simple normalized color gradient could lead to a wrong approximation of the interface normal direction. As a remedy, we
calculate the normal vector by a weighted summation of the color gradients of the interfacial neighbors j
ni ¼
P

jrcjAjP
jrcjAj




 


 : ð28Þ
Here, the interfacial area fraction Aj is used as weighing factor since the color gradient of the interface nearest particle is a
better approximation of the normal direction (see Section 4.2, Fig. 4(b)).

As a consequence of the finite transition region, the general SPH discretization does not everywhere give an accurate esti-
mate of the surfactant gradient. The neighbors of a particle adjacent to the interface do not all belong to the interface and
must therefore be excluded from the gradient calculation. Following Chen et al. [25], a corrected gradient calculation at po-
sition xi yields
rCðxiÞ ¼
X

j

ðxi � xjÞV2
jrWijVj

" #�1

�
X

j

ðCi � CjÞV2
jrWijVj: ð29Þ
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This formulation is valid for all situations where the gradient rCðxiÞ of particle i is calculated with at least two neighboring
particles in the transition band. The implementation of Eq. (29) is for both two and three dimensions straightforward since
only a d� d matrix inversion has to be performed.

During time integration, due to particle motion in the transition band around the interface a non-uniform and non-
smooth surfactant concentration profile normal to the interface may develop. In the limit of an infinitely high resolution, this
unphysical effect vanishes as the width of the transition region tends to zero. Nevertheless, to increase the accuracy espe-
cially for lower resolution simulations, we introduce a smoothing of the surfactant concentration normal to the interface.
Instead of using a reinitialization as presented by Sbalzarini et al. [26], we adopt the directed-diffusion approach to introduce
artificial normal diffusion within the transition band. For this purpose, Eq. (26) is extended with the artificial normal diffu-
sion as
dC
dt
¼ rs � DsrsC ¼

1
jrcjr � ½PsDsrCjrcj þ PnDnrCjrcj�; ð30Þ
where Pn ¼ n� n and Dn ¼ DnI are the normal projection matrix and the normal diffusion coefficient matrix.

3.5. Coupling between the bulk phase and the interface

The evolution of surfactant on the interface and in the bulk phase is coupled by the source term _SCA, thus global conser-
vation of mass is ensured. If one fluid phase is insoluble for surfactant but has an interface containing surfactant, a special
treatment of its interface particles is needed. Physically, the bulk surfactant concentration Ck and the interfacial surfactant
concentration Ck of such a particle k are zero. But as these particles contribute to the surfactant dynamics within the tran-
sition band, the bulk concentration must be extrapolated from the interface particles of the adjacent phase. Accordingly, the
calculated surfactant mass flux of these particles must be taken into account on the opposite bulk particles. Mathematically,
the mass exchange between an interface particle k (of an insoluble phase ) and a bulk particle i (of the opposite soluble
phase) is represented as
D
dMsi

dt

� �
¼ �

X
k

_SCk
Ak

AiP
lAl
; ð31Þ
where the fraction of the interface area Ai is used as weight. For consistency this weight is normalized with the sum of the
fractions of the interface areas

P
lAl. Here, the summation is on all particles l, which are in the surfactant soluble phase and in

the neighborhood of particle k (within the support domain of the kernel function).

3.6. Time-step criteria

The equations presented above are integrated in time with an explicit predictor – corrector scheme. All quantities are
updated in every substep. For stability reasons the global time-step is chosen based on several time-step criteria [27,28].
Within the weakly-compressible SPH formulation, following [27,28,1] the time-step must satisfy the CFL-condition (Cou-
rant–Friedrichs–Lewy-condition) based on the maximum artificial sound speed and the maximum flow speed
Dt 6 0:25
h

cmax þ jumaxj
; ð32Þ
the viscous condition
Dt 6 0:125
h2

m
; ð33Þ
the body force condition
Dt 6 0:25
h
jgj

� �1=2

; ð34Þ
the surface tension condition
Dt 6 0:25
qh3

2pa

 !1=2

ð35Þ
and the diffusion condition
Dt 6 0:125
h2

D
: ð36Þ
Therefore, the global time-step is evaluated through the minimum between Eqs. (32)–(36).
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4. Validation

To validate our modeling and implementation of the diffusion effects and surfactant kinetics with SPH we consider sev-
eral two-dimensional test cases isolating each single effect. Provided that an analytic solution is available, we compare our
results and test for convergence.

4.1. Bulk diffusion

In a first test we calculate the diffusion of a scalar species in a bulk liquid phase. For the computational domain we choose
a square of fluid surrounded by solid walls with a length of lx ¼ ly ¼ 0:1 m in each direction. The diffusion coefficient of the
liquid phase is taken to be D ¼ 4� 10�6 m2=s. Using an initial exponential distribution of the concentration field Cðx; tÞ
Fig. 2.
smooth
Cðx; t ¼ 0Þ ¼ exp
�ðx� x0Þ2

4DT0

" #
; ð37Þ
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
on

ce
nt

ra
tio

n 
[-]

x [-]

Analytic Solution
t = 0.0
t = 1.5
t = 3.0

(a)

1e−05

1e−04

1e−03

1e−02

 0.001  0.01  0.1

L 1
 [−

]

Resolution h [−]

T = 3.0
2nd order

(b)

(a) Concentration profiles of bulk diffusion at t = 0.0, 1.5 and 3.0; solid line: analytic solution, symbols: SPH results. (b) L1 error with respect to
ing length h for the bulk diffusion test (see Section 4.1).
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the analytic solution of the diffusion problem follows from:
Fig. 3.
to smoo
Cðx; y; tÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
t þ T0
p exp

�ðx� x0Þ2

4Dðt þ T0Þ

" #
; ð38Þ
where T0 ¼ 1s; A ¼ 1 kg m�3 s1=2 and x0 ¼ lx=2.
Fig. 2(a) shows the evolution of the concentration profiles at t ¼ 1:5 and 3. The solid lines represent the exact analytic

solution and the symbols denote the results of a simulation with smoothing length h ¼ 8:�3� 10�3. The time and spatial val-
ues are made dimensionless with the reference values T0 and lx, respectively. Even though this resolution is relatively poor,
the calculated profiles are in very good agreement with the analytic solution. To evaluate the accuracy of our calculation
quantitatively we define the error norm L1
L1 ¼
P

jjCj � Cðxj; tÞj
C1N

; ð39Þ
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which is the normalized particle-averaged deviation from the analytic solution. Here, N denotes the total number of parti-
cles. In Fig. 2(b) the error norm L1 is plotted with respect to the smoothing length h. As expected, with increasing resolution
the error decreases and converges approximately with second order.

4.2. Surface diffusion

For validation of the surface diffusion model we calculate the temporal evolution of an initially non-uniformly distributed
surfactant concentration profile on an interface. We put a drop with radius R ¼ 1� 10�3 m into a liquid environment (cen-
tered in a Cartesian coordinate system) and initialize the interfacial surfactant concentration with the solution from Xu et al.
[10] at t ¼ 0
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Fig. 4.
clarity)
CðH; tÞ ¼ C1
2
½expð�tÞ cosðHÞ þ 1�: ð40Þ
Here, H is the counterclockwise angle of the interface with respect to the x-axis.
Fig. 3(a) shows the prediction of the interfacial concentration profiles with our SPH-model compared to the analytic solu-

tion at several timesteps. The calculations were performed with a smoothing length h ¼ 5� 10�3 m, a surface diffusivity of
D ¼ 1� 10�6 m2=s for both the tangential and normal diffusion and a maximum surfactant concentration
C1 ¼ 3� 10�6 kg=m2. The reference values used to non-dimensionalize the results are T1 ¼ 1 s;C1 and l1 ¼ R. The calcu-
lated profiles only show very small discrepancies from the analytic solution. These errors converge with about first-order,
see Fig. 3(b).

To clarify the influence of the interface-normal approximation, in a next step we neglect the diffusivity on the interface
(Ds ¼ 0) and simulate the surfactant concentration evolution on a steady air–water interface. Physically, the profile is ex-
pected to remain at the initial condition. The left profile in Fig. 4(a) shows the surfactant profile after t ¼ 5 using the nor-
malized color gradients as normal direction ni ¼ rci=jrcij. The profile is not smooth and differs strongly from the initial
condition. This problem arises from the fact, that the particles are initially positioned on a Cartesian grid and that the circular
interface is not represented accurately. Consequently, the color gradients do not represent the correct normal direction,
which is shown in the left plot of Fig. 4(b). Note that the length of the vectors is adjusted for clarity.

We solved this problem with the introduction of the averaged normal calculation with Eq. (28). The corresponding sur-
factant profile and normals are shown in the right plots in Fig. 4(a) and (b). The initial surfactant profile is preserved and the
normal diffusion does not introduce artificial surface diffusion.

4.3. Surfactant kinetics

Now we test our implementation of the interfacial surfactant transport and the coupling between the bulk phase and the
interface. For this purpose, the adsorption of surfactant molecules to an initially clean interface is investigated. A bubble of
size R ¼ 1� 10�3 m is exposed to a liquid phase with a constant surfactant concentration of Cðx; t ¼ 0Þ ¼ C0 ¼ 1 kg=m3.
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Assuming the bulk phase to be very large and the diffusion process to be infinitely fast, the bulk surfactant concentration
is homogeneous in space and constant in time. Hence, the bulk surfactant concentration directly underlying the interface is
constant as well. From Eq. (8) using the parameters k1 ¼ 1 kg=m3=s; k2 ¼ 0:1� 1=s and CH ¼ 0:005 kg=m3 an equilibrium
interfacial surfactant concentration can be obtained as
Fig. 5.
surfacta
Ceq

CH
¼ k1C

k1C þ k2
� 0:91; ð41Þ
where the adsorption and desorption rates balance each other, and the interfacial surfactant concentration remains constant.
The first line in Fig. 5(a) shows the result of a simulation of a fixed air bubble in a surfactant rich water surrounding
ð1 : D1 ¼ 1Þ. Here, time is non-dimensionalized with the reference time t1 ¼ 1=k2. As a reference, the broken horizontal line
shows the analytic equilibrium state.

Now we include diffusion effects, i.e. the surfactant kinetics from Eq. (8) depend also on the local volume concentration of
surfactant at the interface Cr¼R. The diffusion coefficient in the bulk liquid phase is set to D1 ¼ 1� 10�6 m2=s, which corre-
sponds to a Peclet number of Pe1 ¼ 0:1 (using the velocity scale u1 ¼ l1k2). The second line in Fig. 5(a) shows the evolution
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of the interfacial surfactant concentration including the coupling with the liquid phase ð2 : Pe1 ¼ 0:1Þ. The corresponding
evolution of the bulk concentration in the subsurface region directly underneath the interface is also plotted in this figure
ð3 : Cr¼R; Pe1 ¼ 0:1Þ. Since the adsorbed surfactant material is taken from the liquid phase, the bulk concentration Cr¼R de-
creases, and at the same time the interfacial concentration C does not increase as fast as in the infinite diffusion case. From
t � 0:2 the bulk concentration increases again, caused by diffusion of surfactant in the liquid phase and a reduced surfactant
flux between the interface and the bulk phase. The evolution of surfactant mass on the interface and in the liquid phase over
time is shown in Fig. 5(b). As can be expected, with an increasing surfactant mass on the interface the surfactant mass in the
liquid phase decreases. The total amount of surfactant in the system is conserved.
5. Results and discussion

With the results presented above we have shown the validity and accuracy of our model. In the following, we perform
more complex two-dimensional simulations with coupled effects.
5.1. Oscillating bubble

Following Otis et al. [20], we simulate the dynamic surface tension of an air–water-like interface with surfactant. As in
this problem the densities of the two phases do not determine the evolution, we assume the ‘‘air” and ‘‘water” phase to have
a density ratio of 10 only to facilitate computation. The viscosities of the two phases are chosen such that the ratio of the
kinematic viscosities is comparable to the realistic case. Due to this smaller density difference, we avoid too small timesteps
and decrease the computational time, see Hu and Adams [1].

As in the experiment, an air bubble is exposed to a liquid environment containing surfactant molecules. Enforcing an
oscillating of the bubble, the dynamics of the surfactant transportation can be investigated. In our SPH method we perform
the bubble oscillation by changing the mass of the air particles. This resembles the blowing and suction of air in the exper-
iment. Consequently, the density of the particles changes and the pressure force drives the bubble to change its size. Starting
from a droplet with initial radius of rmax ¼ 0:02 m at an equilibrium surfactant concentration CH ¼ 3� 10�6 kg=m2, the size
of the air–water interface is oscillated sinusoidally with the period T and the evolution of the surfactant concentration on the
interface is calculated. In the first set of simulations we assume adsorption-limited surfactant dynamics. Thus the bulk sur-
factant concentration is constant since the diffusion in the liquid phase is considered to be infinitely fast. The surfactant
dynamics from Eq. (8) are extended to the insoluble and the squeeze-out regime, see Otis et al. [20]. In the second regime
ðCH
6 C < CmaxÞ the interface is insoluble, i.e. the concentration changes only by interface deformation,
dms

dt
¼ dðCAÞ

dt
¼ 0: ð42Þ
Reaching the maximum surfactant concentration Cmax, the surfactant molecules are packed as tightly as possible in the inter-
face and further compression results in an squeeze-out of molecules back to the bulk phase.

Fig. 6(a) shows the surface-tension loops for various adsorption depths ~k ¼ k1C=k2 at a Biot number of Bi ¼ k2T ¼ 1 for the
adsorption-limited case. At a very low adsorption depth the minimum possible surface tension is never reached during an
oscillation cycle. This is due to the fact, that in the bulk phase there are not enough surfactant molecules available to accu-
mulate at the interface. Increasing the adsorption depth, this limit is overcome and the nearly-zero surface tension occurs in
the loop. Furthermore, the hysteresis increases with increasing adsorption de